POTBUG: A Mind's Eye Approach to Providing BUG-Like Guarantees for Adaptive Obstacle Navigation Using Dynamic Potential Fields
نویسندگان
چکیده
The problem we address is adaptive obstacle navigation for autonomous robotic agents in an unknown or dynamically changing environment with a 2-D travel surface without the use of a global map. Two well known but hitherto apparently antithetical approaches to the problem, potential fields and BUG algorithms, are synthesised here. The best of both approaches is attempted by combining a Mind’s Eye with dynamic potential fields and BUG-like travel modes. The resulting approach, using only sensed goal directions and obstacle distances relative to the robot, is compatible with a wide variety of robots and provides robust BUG-like guarantees for successful navigation of obstacles. Simulation experiments are reported for both nearsighted (POTBUG) and far-sighted (POTSMOOTH) robots. The results are shown to support the theoretical design's intentions that the guarantees persist in the face of significant sensor perturbation and that they may also be attained with smoother paths than existing BUG paths.
منابع مشابه
Adaptive Sliding Mode Tracking Control of Mobile Robot in Dynamic Environment Using Artificial Potential Fields
Solution to the safe and collision-free trajectory of the wheeled mobile robot in cluttered environments containing the static and/or dynamic obstacle has become a very popular and challenging research topic in the last decade. Notwithstanding of the amount of publications dealing with the different aspects of this field, the ongoing efforts to address the more effective and creative methods is...
متن کاملA Navigation System for Autonomous Robot Operating in Unknown and Dynamic Environment: Escaping Algorithm
In this study, the problem of navigation in dynamic and unknown environment is investigated and a navigation method based on force field approach is suggested. It is assumed that the robot performs navigation in...
متن کاملPotential field based position control for Mitsubishi RV-6S industrial robots
Manipulator control based on the artificial potential fields method has been shown to be a good solution for real-time obstacle avoidance and navigation in complex, dynamic environments. This paper presents an implementation of this approach for a Mitsubishi RV-6S industrial robot with an emphasis on the use for obstacle avoidance. The robot is able to perform simple navigation tasks while avoi...
متن کاملADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS
This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...
متن کاملADAPTIVE BACKSTEPPING CONTROL OF UNCERTAIN FRACTIONAL ORDER SYSTEMS BY FUZZY APPROXIMATION APPROACH
In this paper, a novel problem of observer-based adaptive fuzzy fractional control for fractional order dynamic systems with commensurate orders is investigated; the control scheme is constructed by using the backstepping and adaptive technique. Dynamic surface control method is used to avoid the problem of “explosion of complexity” which is caused by backstepping design process. Fuzzy logic sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006